
Choreography-Driven Socialization of
Peer-to-Peer Communities

Xi Bai, XiaLi Li, Dave Robertson

Centre For Intelligent Systems and their Applications, School of Informatics, University of Edinburgh

xi.bai@ed.ac.uk

Abstract

From the perspective of choreography, an approach for forming and evolving
Peer-to-Peer (P2P) communities is proposed in terms of interactions between
peers. Since community can prune the peer search space, relying on it, a
peer can more easily discover the desired services and other collaborative
peers. An Interaction Model (IM) publication strategy is presented, based
on which users can publish their IMs without exposing their private and
sensitive knowledge to others. Except ontologies for describing the structure
of P2P communities, there is no other unified ontology required in our ap-
proach, so peers can use arbitrary ontologies and corresponding matchmakers
to make use of heterogenous resources. A simulation of service discovery and
community formation is presented as well, indicating that our approach is
generic and will facilitate the emergence of various peer side applications.

Choreography Description Using Interaction Model

From the perspective of choreography, we use Lightweight Coordination
Calculus (LCC) to describe the interactions between pees. Following LCC
codes depicts an Interaction Model (IM) in which a client purchases a prod-
uct from a shop using his or her credit card but since there is no explanation
about any element belonging to this IM, it is impossible for peers that want
to purchase or sell a product to automatically recognize this IM which is
exactly the one they really need. Therefore, service discovery and reuse are
both hampered.

r(client, initial, 1, 1)
r(shop, necessary, 1)

a(client(ProductCode), C) ::
buy(ProductCode, CreditCard)⇒ a(shop, S)← cc(CreditCard) ∧

lookup(S)then
receipt(Receipt)⇐ a(shop, S)

a(shop, S) ::
buy(ProductCode, CreditCard)⇐ a(client(), C)then
receipt(Receipt)⇒ a(client(), C)←
enough credit(CreditCard, ProductCode)∧
complete order(ProductCode, CreditCard,Receipt)

P2P Community Ontology

We give a brief description about our P2P community ontology. In this
ontology, two notable points are the notion of Peer and the notion of Com-

munity. The behaviors of a peer are just like the ones a person has in the real
world, e.g., a peer may knows about other peers in the network. Since FOAF
vocabulary is a widespread ontology used for describing persons, their activ-
ities and their relations to others, we take advantage of this vocabulary to
describe the peers as well. A community is a group of peers which have some
common interests. We want peers belonging to the community can do inter-
connecting discussions to each other through some methods such as blogs,
forms and mailing lists in the future. For the sake of this purpose, we maxi-
mize the extensibility of our community notion by using SIOC vocabulary.
Base on the above analysis, openk:Peer is the sub-class of foaf:Person and
openk:P2PCommunity is the sub-class of sioc:Usergroup. Peer profiles are
very important for community formation and our Peer class is like a tem-
plate that defines the structure of the peer profile. The IM ontologies were
extracted in terms of the natural structure of LCC codes, which are very
intimate with the above P2P community ontologies. The concise structure
of our P2P Community Ontology is described in Figure 1.

Figure 1: P2P Community Ontologies

Then the IM described in the last section can be annotated in terms of P2P
community ontologies using RDFa or Microformats.

Community Formation

A Community is a group of peers which share common interests and are
capable of collaborating with each other to fulfill one or more specific IMs re-
lated to this community. The IM for forming P2P communities is described
as follows:
role(group, initial, 1)
role(subscriber, necessary, 1)
role(member, necessary, 1)
a(group(GPS,GPF), G) ::

(enter(PPS)⇐ a(subscriber, Ps)then
a(group(GPS,GPF), G)← not(teminate(G,GPS)) ∧

recruit(Ps,G,GPS, PPS,GPF))
or

(exit(PPS)⇐ a(member, Pm)then
a(group(GPS,GPF), G)← remove(Pm,G,GPS, PPS,GPF))
or

(merge⇐ a(group(EGP,), E)then
a(group(GPF,GPF), G)← merge(G,E,GPS,EGP,GPF))
or

(exec(AS, IM,PL)← member of (G, IM,GPS) ∧
quorate(IM,PL,GPS)∧initiator(IM,PL,AS,GPS)then

(group(GPS,GPF), G))
or

(merge⇒ a(group(EGP,), Y)← merge condition(GPS, Y) ∧
GPF = GPS)

or

(null← terminate(G,GPS) ∧GPF = GPS).

a(subscriber, Ps) ::
enter(PP)⇒ a(group(,), G)← want to subscribe(Ps,G).

a(member, Pm) ::
exit(PP)⇒ a(group(,), G)← want to leave(Pm,G).

Community Evolution

The IM for P2P community evolution is described as follows:

role(peer, initial, 1)
role(helper, necessary, 1)

a(peer(PPS, PPF), P i) ::
update(ERs)⇐ r(helper(ERs), H)then
a(peer(PPS, [], LRs, PPF,ERs,), P i)then
update(LRs)⇒ a(Peer(,), Pe)← want to share(LRs))

a(peer(PPS,U, LRs, PPF,ERs), P i) ::
(null← ERs = [] ∧ PPF = PPS)
or

(null← ERs = [Rule|ERsR] ∧ inference(Rule, PPS, U)
∧merge rule(Rule, PPS, LRs)then
a(peer(U, [], LRs, PPF,ERsR), P i))

Based on the aforementioned P2P community ontologies, we can provide
peers especially who have expertise with a chance to create rules that will
direct themselves and other peers to update their local profiles.

I. ∀P∀IM.publish IM (P, IM)
→ ∃R.can play(P,R) ∧ has role(IM,R)

II. ∀P∀IM∀C.publish IM (P, IM) ∧ belong to(IM,C)
→ ∃U.holdsAccount(P,U) ∧ has member(C,U)

III. ∀P∀R∀IM∀C.can play(P,R)∧has role(IM,R)∧belong to(IM,C)
→ ∃U.holdsAccount(P,U) ∧ has member(C,U)

IV. ∀P∀R.(∀T.has constraint(R, T)
→ can satisfy(P, T))→ can play(P,R)

V. ∀IM∀.C(∀A.has annot(C,A)
→ has annot(IM,A))→ belong to(IM,C)

VI. ∀IM∀R∀A.has role(IM,R) ∧ has annot(R,A)
→ has topic(IM,A)

VII. ∀IM∀A∀C.has topic(IM,A) ∧ belong to(IM,C)
→ has topic(C,A)

VIII. ∀PA∀RA∀PB∀RB∀IM.can play(PA, RA)∧has role(IM,RA)∧
can play(PB, RB) ∧ has role(IM,RB) ∧ PA 6= PB ∧RA 6= RB

→ knows(PA, PB)

Simulation

In a P2P environment, the basic and smallest interaction happens between
two peers. Therefore, we can use PCs to simulate the invitation process
between peers. Each computer has been installed with an server that inter-
acts with other servers running on other peers by sending out or receiving
messages. This makes each computer a client and server at the same time.
IMs belonging to each peer are published at each server side. The topology
of the P2P community is depicted in Figure 2.

Figure 2: P2P Community Topology

Suppose Peer A expects to invite Peer B to join its community by sending
out an IM. Then Peer B receives this IM by browsing the corresponding
advertisement page running on the server of Peer A. An application at the
side of Peer B can automatically parse the IM page into RDF statements.
By querying these RDF statements, Peer B can check if it can play roles
in the IM. If the answer is true, Peer B will further query the KB stored
on Peer A to find out if this IM belongs to some specific communities or
not and apply for a membership if possible. The URI of this IM is denoted
by im uri; the named graph of KB on Peer B is denoted by PeerB KB;
the URI of the graph of received IM is denoted by IM . Then the following
Open Knowledge Component (OKC) implemented using SPARQL can help
Peer B figure out which role it can play and which potential community it
can join:
SELECT ?role ?community
FROM 〈IM〉
FROM NAMED 〈PeerB KB〉
WHERE {
GRAPH 〈PeerB KB〉 {
?PeerB a openk:Peer.
?role a openk:Role.
?PeerB openk:can play ?role.
}
?community a openk:P2PCommunity.
〈im uri〉 openk:has role ?role.
〈im uri〉 openk:belong to ?community. }

A peer being capable of playing a role may or may not be declared explicitly
in its profile, so rules or composite rules can be used for mining this implicity.
According to Rule IV, “?PeerB openk:can play ?role” in the above OKC
can be inferred by invoking the following OKC:
result set = SELECT ?peer ?role
WHERE {}
for each result in result set

flag = ASK WHERE {
〈result.getURI(?peer)〉 openk:can play
〈result.getURI(?role)〉}

if flag == false

result set′ = SELECT ?constraint
WHERE {
〈result.getURI(?role)〉 openk:has constraint
?constraint
}
CONSTRUCT {
〈result.getURI(?peer)〉 openk:can play
〈result.getURI(?role)〉}

WHERE {
for each result′ in result set′

〈result.getURI(?peer)〉 openk:can satisfy
〈result′.getURI(?constraint)〉.

end-for
}

end-if

end-for

Future Work

Currently IM publishers are allowed use RDFa to manually inject annota-
tions into XHTML. Based on the annotation embedded page, we can develop
various peer side applications such as IM discovery and community member
recruitment. A middle ware should be provided to publishers for publishing
and annotating their IMs semiautomatically. The P2P community forma-
tion approach needs to be evaluated in the future by simulating a large scale
P2P network.

